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Abstract : A pebbling move is defined by removing two pebbles from some

vertex and placing one pebble on an adjacent vertex. A graph is said to be cover

pebbled if every vertex has a pebble on it after a series of pebbling moves. The

maximum independent set cover pebbling number of a graph G is the minimum

number, (G), of pebbles required so that any initial configuration of (G) pebbles

can be transformed by a sequence of pebbling moves so that after the pebbling

moves the set of vertices that contains pebbles form a maximum independent set

S of G. In this paper, we determine the maximum independent set cover pebbling

number of a binary tree.
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1. Introduction 

Given a graph G, distribute k pebbles on its vertices in some configuration, call it as 

C. Assume that G is connected in all cases. A pebbling move is defined by removing 

two pebbles from some vertex and placing one pebble on an adjacent vertex. [1] The 

pebbling number  is the minimum number of pebbles that are sufficient, so that 

for any initial configuration of  pebbles, it is possible to move a pebble to any 

root vertex v in G. [2] The cover pebbling number  is defined as the minimum 

number of pebbles needed to place a pebble on every vertex of the graph using a 

sequence of pebbling moves, regardless of the initial configuration. A set S of 

vertices in a graph G is said to be an independent set ( or an internally stable set) if no 

two vertices in the set S are adjacent. An independent set S is maximum if G has no 

independent set  with . 

We have introduced the concept maximum independent set cover pebbling number in 

[5]. The maximum independent set cover pebbling number, , of a graph , to be 

the minimum number of pebbles that are placed on  such that after a sequence of 

pebbling moves, the set of vertices with pebbles forms a maximum independent set S 

of G, regardless of their initial configuration. In this paper, we determine the 

maximum independent set cover pebbling number  for a binary tree.  

Notation 1.1:  denotes the number of pebbles placed at the vertex . Also  

denotes the number of pebbles on the graph . 

2. Maximum independent set cover pebbling number of a binary tree 

Definition 2.1. [3]  A complete binary tree, denoted by Bn, is a tree of height n, with 

2
i
 vertices at distance i from the root. Each vertex of Bn has two “children”, except for 

the set of 2
n
 vertices that are distance n away from the root, none of which have 

children. The root will be denoted by Rn.  
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2. Maximum independent set cover pebbling number of a binary tree 

Definition 2.1. [3]  A complete binary tree, denoted by Bn, is a tree of height n, with 

2
i
 vertices at distance i from the root. Each vertex of Bn has two “children”, except for 

the set of 2
n
 vertices that are distance n away from the root, none of which have 

children. The root will be denoted by Rn.  

Obviously and  since . 

Theorem 2.2. For the binary tree B2, . 

Proof: Clearly B2 contains two B1’s as subtrees which are adjacent to the vertex R2, 

where R2 is the root vertex of B2. Let B’ be the right subtree with the vertices R’, a1, 

a2 and B” be the left subtree with the vertices R”, b1, b2 of the binary tree B2 (as given 

in Figure 1). Put forty pebbles on the vertex a2. Then we cannot cover the maximum 

independent set of B2. Thus   

                                                           R2  ● 

 

                                     R” ●                                   R’    ● 

                                     

                 b1 ●                          b2  ●                 a1 ●                         

Figure 1. The Binary tree B
2

Now consider the distribution of forty one pebbles on the vertices of B2. According to 

the distributions, we find the following three cases: 

Case 1: Let f(B’) ≥ 6 and f(B”) ≥ 6. 

If f f(R2) ≥ 1, then clearly we can cover the maximum independent set of B2. So assume 

that f(R2) = 0. Without loss of generality, let f(B’) ≥ 21. So either the path a1R’ or the 

path a2R’ contains eleven pebbles or more, say a1R’. We can move a pebble to R2 using 

at most four pebbles from a1R’. Then f(B’) ≥ 6 and hence we are done, since (B1) = 6. 
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Case 2: Let f(B’) ≤ 5 and f(B”) ≤ 5. 

This implies that f(R2) ≥ 31. We move six pebbles each to the vertices R’ and R”. 

Then f(R2) ≥ 7 and hence we are done. 

Case 3: Let f(B’) ≥ 6 and f(B”) ≤ 5. 

Clearly we are done if f(B”)+f(R2) ≥ 9, since <{V(B”) {R2}}>  K1,3 and (K1,3) 

= 9 [5]. So assume that f(B”)+f(R2) ≤ 8. This implies that f(B’) ≥ 33 pebbles. If the 

vertices a1, a2, and R’ contain 5 pebbles then we can move a pebble to the vertex R2 at 

a cost of four (at most) pebbles. Since we have at least 27 extra pebbles on B’, either 

the path a1R’ (or) a2R’ receives at least four pebbles or both a1 and a2 receive two or 

more pebbles. If f(B”) ≥ 1 or f(R2) ≥ 2 then we are done. So assume that f(B”) = 0 and 

f(R2) ≤ 1. Thus B’ contains forty pebbles. Now we can send eight pebbles to R2 at a 

cost of thirty two (at most) pebbles from the vertices of B’. We cover the maximum 

independent set of B” using the eight pebbles at R2. If f(R2) = 1 then clearly we are 

done. Otherwise f(B’) ≥ 9 and we are done since <{V(B”) {R2}}>  K1,3 and 

(K1,3) = 9. 

Therefore,          

Theorem 2.3. For the binary tree B3,  

Proof: Let B’ be the right subtree of height two with the root vertex R’ and B” be the 

left subtree of height two with the root vertex R” of the binary tree B3. Consider the 

distribution of 312 pebbles on the vertex (B’) where degree(v)=1. Then we 

cannot cover the maximum independent set of B3. Thus  

Now consider the distribution of 313 pebbles on the vertices of B3. According to the 

configurations, we find the following three cases: 

Case 1: Let f(B’) ≥ 41 and f(B”) ≥ 41. 

Clearly we are done if f(R3) = 0, 2, or f(R3) ≥ 4. So, assume that f(R3) = 1 or 3. 

Without loss of generality, let f(B’) ≥ 155. We have to move a pebble to R3, to cover 

the maximum independent set of B3. Anyone of the 4-paths leading from the root R3  
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of B3 to the bottom row of B’ contains at least eight pebbles. So we can move a 

pebble to R3 using at most eight pebbles. Now we move  pebbles to R’ from 

R3. Then f(B’) ≥ 41 and f(B”) ≥ 41 and hence we are done, since B’ B2 and B” B2. 

Case 2: Let f(B’) ≤ 40 and f(B”) ≤ 40. 

This implies that, f(R3) ≥ 233. Using 164 of these pebbles from R3, we can move 41 

pebbles each to the root R’ of B’ and R” of B”. Then the remaining number of pebbles 

in R3 is at least five. If the remaining pebbles in R3 are even then we move  

pebbles to R’. Otherwise, we do the following pebbling moves to obtain even number 

of pebbles in R3. We move two pebbles from R3 to R’ and then move one pebble from 

R’ to R3. Thus the remaining number of pebbles in R3 is even then we move 

 pebbles to R’. Therefore f(B’) ≥ 41 and f(B”) ≥ 41 and hence we are done. 

Case 3: Let f(B’) ≥ 41 and f(B”) ≤ 40. 

Clearly the remaining 232 pebbles are somewhere in the graph B’ {R3} to cover the 

maximum independent set of B”. If f(R3) ≥ 34 then we can move seventeen pebbles to 

the root R” of B” and hence we are done. So assume that f(R3) ≤ 33. This implies that 

f(B”)+f(R3) ≤ 73. Thus f(B’) ≥ 240. Note that, if B’ contains 13 pebbles then we can 

move a pebble to the root R3 of B3 at a cost of at most eight pebbles from B’. Also 

note that we should not decrease the least possibility of the total pebbles in B’. Thus 

we can send twenty four pebbles to the root R3. Clearly we are done if f(R3) ≥ 10 or 

f(B”) ≥ 6. So assume that f(R3) ≤ 9 and f(B”) ≤ 5. This implies that f(B’) ≥ 299. So we 

can move 32 pebbles to the root R3 of B3. Clearly we are done if f(R3) ≥ 2 or f(B”) ≥ 

1. Otherwise, f(B’) ≥ 312. So we can move 33 pebbles to R3. If f(R3) = 1 then clearly 

we are done. Otherwise we can move exactly thirty four pebbles to R3 while retaining 

forty one pebbles on B’. Thus we are done. 

Therefore,         ■ 

Theorem 2.4. For the binary tree B4,  
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Proof: Let B’ be the right subtree of height three with the root vertex R’ and B” be the 

left subtree of height three with the root vertex R” of the binary tree B4. Let 

(B’) such that degree(v) = 1 and v is the rightmost vertex of B’. 

Consider the distribution of 2504 pebbles on the vertex v. Then we cannot cover the 

maximum independent set of B4. Thus  

Now consider the distribution of 2505 pebbles on the vertices of B4. According to the 

distributions, we find the following three cases: 

Case 1 : Let f(B’) ≥ 313 and f(B”) ≥ 313. 

If f(R4) ≥ 1 then we can cover the maximum independent set of B4, since B’ B3 and 

B” B3. So assume that f(R4) = 0. Without loss of generality, let f(B’) ≥ 1253. So any 

one of the 8-paths leading from the root R4 of B4 to the bottom row of B’ contains 

thirty two pebbles or more. So we can move a pebble to R4 using at most thirty two 

pebbles from B’. Then f(B’) ≥ 313 and f(B”) ≥ 313 and hence we are done. 

Case 2 : Let f(B’) ≤ 312 and f(B”) ≤ 312. 

This implies that f(R4) ≥ 1881. Using 1252 of these pebbles from the vertex R4, we 

can move 313 pebbles each to the root R’ of B’ and R” of B”. Then f(R4) ≥ 629 and 

hence we are done. 

Case 3 : Let f(B’) ≥ 313 and f(B”) ≤ 312. 

Clearly the remaining 1880 pebbles are somewhere in the graph B’ {R4} to cover 

the maximum independent set of B”. If f(R4) ≥ 137 then clearly we are done. So 

assume that f(B”)+f(R4) ≤ 447. Thus f(B’) ≥ 2058. So we can move a pebble to the 

root R4 of B4 at a cost of at most sixteen pebbles whenever 33 pebbles are in B’. Also 

note that we should not decrease the least possibility of the total pebbles in B’. Thus 

we can send 109 pebbles to the root R4. Clearly we are done if f(R4) ≥ 28 or f(B”) ≥ 

14. So assume that f(R4) + f(B”) ≤ 40. Thus f(B’) ≥ 2465. So we can move 134 

pebbles to the root R4. If f(R4) ≥ 3 or f(B”) ≥ 1 then clearly we are done. Otherwise, 

we can send exactly 137 pebbles to R4 while retaining 313 pebbles on B’ and hence 

we are done. 
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Thus .         ■ 

Theorem 2.5. For the binary tree Bn (n ≥ 3), the maximum independent set cover 

pebbling number is given by,  

 

  , (say), 

where Si, n denotes the i
th

 term of the above sum and = 2
n
 if n is even and  

otherwise. 

Proof: Let B’ be the right subtree of height n-1 with the root vertex R’ and B” be the 

left subtree of height n-1 with the root vertex R” of the binary tree B4. Let (B’) 
such that degree(v) = 1 and v is the rightmost vertex of B’. 

Note that the maximum independent set of Bn is the maximum independent set of B’ 
plus the maximum independent set of B”, if n is odd. The vertex Rn is also included if 

n is even. The maximum independent set of a subtree contains the vertices starting 

from the bottom row vertices and then every vertex of every second row. If n is odd 

then this process ends at the root of the subtree. If n is even then this process ends at 

the below row of the root vertex of that subtree. 

First consider the left subtree B”. To cover the vertices of the bottom row of B”, we 

need 2
n-1

 2
2n

 pebbles from v, since bottom row of B” contains 2
n-1

 vertices and that are 

all at 2n distance from v. Similarly, we need 2
n-3

2
2n-2

 pebbles to cover the vertices of 

second row from the bottom row. Thus we need  pebbles to cover 

the maximum independent set of B” from the vertex v. 

A similar work can be done to cover the maximum independent set of B’ from v, 

using  pebbles. So we cover the maximum independent 

set of Bn if n is odd. Suppose n is even then we have to cover the Rn also. Since d(v, 

Rn) = n, we need 2
n
 pebbles from v to cover the vertex Rn. Thus,  
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where  if n is odd and = 2
n
 if n is even. 

Now consider the distribution of pebbles on the vertices of Bn, where n ≥ 3. 

We prove the upper bound by induction on n. By Theorem 2.3 and Theorem 2.4, the 

result is true for n = 3 and n = 4 respectively. Assume that the result is true for Bn-1. 

According to the distributions, we find the following cases: 

Case 1: Let f(B’) <  and f(B”) < . 

If we prove that f(Rn) ≥ 4 +5 then we are done. Since f(B’) + f(B”) ≤ 

2 -2, we get f(Rn) ≥  - 2  + 2. So it is enough to prove that 

  ≥ 6  + 3. - - - - - - (1) 

First note that,  ≥ 2
3n-1

,- - - - (2) by considering only the k=0 term of S1, n. 

 

Also,  

    - - - - - (3) 

and  
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    - - - - - (4) 

and     - - - - - (5) 

Equations (2) through (5) show that (1) holds if, 

 

Or if,  

 

which holds for . Of course the fact that  ≥ 6  + 3 holds for 

 as well. 

Case 2: Let f(B’) ≥  and f(B”) ≥ . 

Let n is odd. 

If f(Rn) = 0, 2 or f(Rn) ≥ 4 then clearly we are done. So assume that f(Rn) = 1 or 3. 

Without loss of generality, let f(B’) ≥ . Anyone of the 2
n-1

-path leading 

from the root Rn to the bottom vertices of B’ contains at least 2
n
 pebbles and hence we 

can move a pebble to Rn using (at most) 2
n
 pebbles. This is always possible since, 

. Now we move  pebbles to R’ from 

Rn. Then f(B’) ≥  and f(B”) ≥  and hence we are done, since B’ Bn-1 

and B” Bn-1. 

Let n is even. 
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If f(Rn) ≥ 1 then clearly we are done. So assume that f(Rn) = 0. Without loss of 

generality, let f(B’) ≥ . Anyone of the 2
n-1

-paths leading from the root Rn to the 

bottom vertices of B’ contains at least 2
n
 pebbles (since, ) and 

hence we can move a pebble to Rn using (at most) 2
n
 pebbles. Then f(B’) ≥  

and f(B”) ≥  and hence we are done, since B’ Bn-1 and B” Bn-1. 

Case 3: Let f(B’) ≥  and f(B”) < . 

The remaining  pebbles are in somewhere of the graph Bn to 

cover the maximum independent set of Bn. Our strategy is to move all extraneous 

pebbles to the root Rn of Bn from the vertices of B’ so that we can cover the maximum 

independent set of B” and also the vertex Rn if needed. Note that any pebbles in B” 

can substitute for at least one pebble on the root. Clearly, placing all the  

pebbles on B’ is the worst case configuration. Indeed, if pebbles are placed on the 

other vertices of Bn, then moving all those pebbles which are not in B’, to the 

rightmost vertex of B’ would require more pebbles to cover the maximum 

independent set of Bn. Also, note that, we can send at least one pebble to the root Rn 

of Bn if f(Bn-1) ≥ . This is always possible, since  ≥ 2
3n-4

. We 

have  pebbles in B’ to cover the maximum independent set of B” and 

also Rn if needed. 

Let compute  

 

 

 

 

 

    - - - - - (4) 

and     - - - - - (5) 

Equations (2) through (5) show that (1) holds if, 

 

Or if,  

 

which holds for . Of course the fact that  ≥ 6  + 3 holds for 

 as well. 

Case 2: Let f(B’) ≥  and f(B”) ≥ . 

Let n is odd. 

If f(Rn) = 0, 2 or f(Rn) ≥ 4 then clearly we are done. So assume that f(Rn) = 1 or 3. 

Without loss of generality, let f(B’) ≥ . Anyone of the 2
n-1

-path leading 

from the root Rn to the bottom vertices of B’ contains at least 2
n
 pebbles and hence we 

can move a pebble to Rn using (at most) 2
n
 pebbles. This is always possible since, 

. Now we move  pebbles to R’ from 

Rn. Then f(B’) ≥  and f(B”) ≥  and hence we are done, since B’ Bn-1 

and B” Bn-1. 

Let n is even. 
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If f(Rn) ≥ 1 then clearly we are done. So assume that f(Rn) = 0. Without loss of 

generality, let f(B’) ≥ . Anyone of the 2
n-1

-paths leading from the root Rn to the 

bottom vertices of B’ contains at least 2
n
 pebbles (since, ) and 

hence we can move a pebble to Rn using (at most) 2
n
 pebbles. Then f(B’) ≥  

and f(B”) ≥  and hence we are done, since B’ Bn-1 and B” Bn-1. 

Case 3: Let f(B’) ≥  and f(B”) < . 

The remaining  pebbles are in somewhere of the graph Bn to 

cover the maximum independent set of Bn. Our strategy is to move all extraneous 

pebbles to the root Rn of Bn from the vertices of B’ so that we can cover the maximum 

independent set of B” and also the vertex Rn if needed. Note that any pebbles in B” 

can substitute for at least one pebble on the root. Clearly, placing all the  

pebbles on B’ is the worst case configuration. Indeed, if pebbles are placed on the 

other vertices of Bn, then moving all those pebbles which are not in B’, to the 

rightmost vertex of B’ would require more pebbles to cover the maximum 

independent set of Bn. Also, note that, we can send at least one pebble to the root Rn 

of Bn if f(Bn-1) ≥ . This is always possible, since  ≥ 2
3n-4

. We 

have  pebbles in B’ to cover the maximum independent set of B” and 

also Rn if needed. 

Let compute  
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So we can send  pebbles to the root Rn of Bn 

from B’. 

Subcase (a): n is odd. 

Using the  pebbles from Rn, we can cover the maximum independent set 

of B”, except the root R” of B”. But R” is also covered by using the remaining two 

pebbles from Rn. Hence we are done. 

Subcase (b): n is even. 

Using the  pebbles from Rn of Bn, we can cover the maximum 

independent set of B”. But Rn is also covered since f(Rn) ≥ 1. Hence we are done. 

Thus the upper bound follows. 

Therefore  is as desired. 

Note 2.6: we can reformulate the maximum independent set cover pebbling number 

of Bn, if we know the value of  where n ≥ 3. That is,  
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